
Transactions with Unknown Duration for Web Services

Patrick Sauter
University of Ulm

ps9@informatik.uni-ulm.de

Ingo Melzer
DaimlerChrysler AG

paper@ingo-melzer.de

Abstract: Since the convergence of transactional Web Services and workflow
management, human interaction can be a determining factor for the length of a
distributed business-to-business transaction. Such transactions of unknown
duration (e.g. due to human interaction) can be modeled properly neither as a
short-running WS-AtomicTransaction nor as a long-running WS-BusinessActivity.
Our proposal is to add the concept of ready-to-commit timeouts to the exclusive
locking model of the WS-AtomicTransaction protocol by making a few minor
extensions. The result is a simple and straightforward implementation strategy for
transactions with unknown duration based on the Web Services Transaction
Framework.

1 Introduction

Web Services were originally designed to simplify computer-to-computer
communication. During the last few years, an extensive set of standards and
specifications has emerged as modular building blocks for adding functionality to a Web
Service. An important feature of Web Services in a business-to-business (B2B)
environment is transaction support, because failed agreement on a transaction outcome
(e.g. overbooked airline seats or a greater number of accepted orders for Christmas trees
than there are in stock) is a highly undesirable scenario for any business.

A solution to this problem might be to directly implement every business transaction
(e.g. book order) as a two-phase commit (2PC) ACID-compliant (Atomicity,
Consistency, Isolation, and Durability [Gr81]) transaction, e.g. by means of the WS-
AtomicTransaction [La03b] specification. In a distributed Web Services environment,
however, this leads to extensive locking of resources which, in turn, is also undesirable,
particularly if the locks are not released within a reasonable period of time. A solution
which does not cause high lock rates might be to use so-called “long-running
transactions”. For example, the WS-BusinessActivity [La04] specification uses
compensating actions (i.e. explicitly coded business logic) instead of locking resources.
As a result, a Web Services programmer must determine at design-time whether a
service is short-running (and therefore has to be implemented using WS-
AtomicTransaction) or long-running (and should be implemented using WS-
BusinessActivity).

Since the publication of the Business Process Execution Language for Web Services
(BPEL4WS, cf. [Th03]) specification, the Web Services technology has also gained
ground in areas in which not only technical criteria such as processor and network speed
determine the duration of an operation. Steps in a BPEL4WS workflow might in some
cases have to wait for human input, e.g. approval by clicking an “OK” button or
selecting an alternative from a drop-down menu. This might take far less than a minute,
but maybe even several days, depending only on the user.

This is a rather special situation for transactions: Although the transaction could
technically be finished within a few milliseconds, the commit message is postponed for
an unknown timespan. Please notice that although it might be tempting to model the
process as a (long-running) BusinessActivity, we will show in section 4.2 that this
approach has several severe disadvantages and sometimes does not make sense.

Our proposition is that human interaction sets new requirements to transaction models
for today's Web Services. Therefore, the contribution of this paper is
• the demonstration that both WS-AtomicTransaction and WS-BusinessActivity do

not provide sufficient support for transactions with unknown duration and
• the recommendation of both a reasonable workaround and a more powerful but yet

simple timeout-based solution on top of WS-AtomicTransaction.

2 Related Work

2.1 Approaches to Distributed Transactions in General

Transactions have long been considered mainly in the context of tightly coupled
database systems. As enterprise information systems became more and more distributed,
several new transaction models were suggested that were tailored towards the
requirements of distributed, multi-participant transactions in loosely-coupled, failure-
prone environments.

For loosely coupled systems (such as Service-Oriented Architectures (SOA), the concept
behind Web Services), a general distinction has to be made between short-running and
long-running transactions. Short-running transactions (such as WS-AtomicTransaction)
are typically implemented using the two-phase commit (2PC) protocol. The
implementation of long-running transactions is covered by a set of advanced transaction
models. Among these are open nested transactions, sagas, and chained transactions. For
a detailed discussion of the differences and applications of the various advanced
transaction models for distributed long-running transactions, cf. e.g. [GR92, JG03]. The
WS-BusinessActivity specification uses open nested transactions as the underlying
transaction model. In short, an open nested transaction is a tree (of arbitrary height) of
so-called “subtransactions”. The nodes in the tree may commit independently of each
other without having to wait for the root transaction to commit (as this is the case for a
closed nested transaction, which is more widely known) [GR92].

All of these advanced transaction models have the following properties in common:
• Relaxation of the isolation property: Intermediate results of a (sub)transaction might

become visible to other participants before the overall transaction has committed.
• Relaxation of the atomicity property: In the event of failure, several (possibly

atomic) (sub)transactions might have already committed and these intermediate
results have to be compensated by invoking explicitly coded business logic.

• Moreover, they all lack the ability to exclusively lock a resource for only a limited
period of time – an important requirement for transactions with unknown duration,
as we will show in section 5.

An approach which tackles some of the issues related to transactions with unknown
duration for Web Services is the Tentative Hold Protocol (THP, cf. [RS01]), a W3C
Note by Intel. As the name already indicates, the THP does not lock resources
exclusively, but only tentatively. A tentative lock may be cancelled at any time which
causes the previous tentative lock holder to be informed of the cancellation. Since THP
locks are not exclusive, the same issue arises as with no locking at all: What will happen
if a user clicks the “OK” button to commit the order transaction of his shopping cart, but
just a few milliseconds before, another participant has ordered the articles and thus none
of them are left? This situation will be discussed in detail in section 5.

2.2 Existing Web Services Specifications for Distributed Transactions

The overall importance of the Web Services technology is continually increasing. In
many fields, there are already several competing specifications for a single type of
service, e.g. security, discovery, notifications, and also transactions. There are three
important rival specifications covering the field of transactions for Web Services:
• the Web Services Composite Application Framework [Li03] by Sun, Oracle,

Arjuna, Iona, and Fujitsu,
• the Business Transaction Protocol [Ce02] by OASIS, and
• the Web Services Transaction Framework (WSTF) by IBM, Microsoft, and BEA

which consists of WS-Coordination [La03a], WS-AtomicTransaction [La03b], and
WS-BusinessActivity [La04].

In this paper, we focus on the latter specification, because the WSTF is currently the
most widely accepted approach with some early implementations already available (e.g.
[http://www.alphaworks.ibm.com/tech/wsat/]). However, some of the particular features
of WS-CAF and BTP are compared to those of the WSTF in section 5. For a detailed
discussion of the WSTF, cf. [Cu03, Ca04]. In short,
• WS-Coordination defines the protocol for distributing the coordination context of a

transaction (e.g. a unique transaction ID) to the participants. For example, WS-
Coordination specifies the interface of a transaction manager (a so-called
coordinator) for creating a new or joining an already existing transaction. Both WS-
AtomicTransaction and WS-BusinessActivity are so-called coordination types that
are built on top of WS-Coordination:

• A WS-AtomicTransaction is a short-lived (though not necessarily ACID)
transaction implementing the two-phase commit protocol in terms of Web Services.
Typically, it is used for locking resources exclusively and sending the Rollback
notification in the event of failure.

• In contrast, a WS-BusinessActivity is a long-running transaction that may consist of
several AtomicTransactions; it does not lock any resources itself (only the invoked
AtomicTransactions hold locks for short periods of time). In the event of failure, it
will invoke explicitly coded compensating actions.

As a result of this distinction, the implementor of a transaction-enabled Web Service has
to decide at design-time whether the transaction is short-running (i.e. a WS-
AtomicTransaction) or long-running (i.e. a WS-BusinessActivity) by answering the
question: “Will the overall transaction always finish within a few milliseconds?”
However, as already mentioned in the introduction, transactions can sometimes be of
unknown duration. Figure 1 depicts the classification of WS-AtomicTransaction and
WS-BusinessActivity regarding compensatability and transaction duration – with the
latter including unknown duration. In this paper, we will focus on the last row, i.e.
transactions with unknown duration.

Compensatable non-compensatable
rollback directly
implemented

compensating actions (i.e.
explicit business logic)

short-
running

WS-AtomicTransaction not required; every short-
running AtomicTransaction
must be able to process the
Rollback notification

not allowed; abort must be
implemented by every
AtomicTransaction

long-
running

impossible; a Business-
Activity may consist of
several AtomicTransac-
tions of which some might
have already committed

WS-BusinessActivity WS-BusinessActivity; in case
of error always send a Fault
(i.e. “cannot compensate”)
notification

unknown
duration
(e.g. human
approval)

discussed in section 5.1 and
5.2; but not WS-Atomic-
Transaction (as shown in
section 4.1)

discussed in section 5.1 and
5.2; but not WS-
BusinessActivity (as shown in
section 4.2)

special case! – e.g. in case of
human approval: not sensible;
otherwise should be called
“human notification”

Figure 1: Classification of WS-AtomicTransaction and WS-BusinessActivity and their uncovered
areas of transactions with unknown duration.

3 A Motivating Example

Web Services are to become the most important technology in business-to-business
environments. In this paper, we will use the example of an online bookstore as a typical
B2B service provider. The bookstore wants to offer its corporate customers a Web
Services interface (cf. Figure 2). The usual book order transaction proceeds as follows:
A back-office (e.g. workflow) system of the customer triggers the invocation of a book
ordering routine. Since a book order is a transaction, the customer system first has to
register (in Figure 2: step 1) with the bookstore's transaction manager (coordinator)
using its CreateCoordinationContext interface as described in [La03a].

Bookstore

Participant 1

Participant 2,...

WS-Coordi-
nation
Interface

Order Trans-
action
Interface
(e.g. Atomic
Transaction
or Business
Activity)

W
eb

 S
er

vi
ce

s
In

te
rf

ac
e

Books in stock:
book 1: 50
book 2: 30
book 3: 40
book 4: 5
...

Stock
Database

(1) register for
transaction

(2) check
availability

(3) order

Figure 2 depicts the overall architecture of the bookstore Web Service.

The customer system is returned a CoordinationContext (e.g. including a
transaction ID) and thus becomes a transaction participant. Next, the participant system
checks the availability (step 2) of the articles it wants to order. If some of the articles are
out of stock, a user has to be asked if the purchase should be carried out anyway. The
missing articles have to be ordered at another bookstore or can be delivered only after a
back order of the bookstore. The user will also be asked for approval if the total amount
of the order (including the articles that were not available) is greater than, say, 20 €.
Purchases with a total amount of less than 20 € are considered uncritical and are typical
candidates for process automation and are carried out immediately. Either in this case or
if the user approves the purchase, the transaction commits and the order is sent (step 3).

As a result, there are two factors determining the length of the book order transaction:
The total amount of the order and the user. If the total amount of the order is less than
20 € and all books are available, the estimated duration might be, say, 100 milliseconds.
If this is not the case, the time it takes until the user clicks the “OK” button on his
worklist is the determining factor. This might be anything between a few seconds (if he
is at his desk) and several days (if he is on vacation).

So, in this example, there is a high level of uncertainty about the transaction length and
we therefore consider it well-suited. However, there are three noticeable assumptions:

1. Books of the same type are not distinguishable – unlike e.g. airplane seats.
2. Whenever a book is considered to be locked by the bookstore's Web Services

interface (i.e. the application server), the book cannot be locked or ordered by
any other of the bookstore's ordering systems, e.g. a JINI interface.

3. Human interaction is required only at a single step in the ordering process, so
there is no complex chain of user inputs.

The main issue discussed in this paper is how to ensure that the system behaves correctly
even if several participants are trying to buy certain quantities of the same book at the
same time, e.g. when multiple participants are waiting for human approval. The decisive
step for this situation is the time between checking the availability of a book and the time
when the order is committed. Altogether, we will discuss four possible implementations
of the bookstore example and their suitability for transactions with human interaction in
the next two sections.

4 First Approach: Using the Web Services Transaction Framework
without Adaptations

4.1 The Straightforward WS-AtomicTransaction Implementation

The WS-AtomicTransaction specification essentially describes the implementation of the
two-phase commit protocol for Web Services. This typically implies that exclusive
locking is involved between the completion of the prepare phase and the completion of
the commit phase. Locking resources is questionable, because other participants are
prevented from accessing the locked resources. Therefore, locks should be released after
a very short period of time. Given these time constraints, it is not feasible to lock
resources and then wait for the user. Instead, the user interaction must take place before
the resources have been locked. Figure 3 shows the order in a workflow-style notation.
Notice that the user input takes place before the actual AtomicTransaction starts.

check
availability

start Atomic
Transaction

lock book 1

lock book 2

lock book 3

all books
locked?

end Atomic
Transaction

end of
order

commit
order

yes

ask useruser in-
teraction required

approved

not approved

no user
required

error

no

Figure 3 depicts what the workflow of the pure AtomicTransaction implementation of a book

order might look like.

The main problem about this approach is the following: Assume that the outcome of the
activity “check availability” is “no user required”, i.e. all books are available and the
total amount of all books does not exceed 20 €. Although the AtomicTransaction starts
almost immediately, another participant might have started an order of the remaining
books in stock in the meantime. The participant system is now unable to order the books
whose availability it has checked only a few milliseconds before. Eventually, an error
occurs. To anyone willing to use the bookstore's Web Services interface, this behavior
seems to be an obvious bug (cf. e.g. [Ne86, pg. 424]).

4.2 The Straightforward WS-BusinessActivity Implementation

BusinessActivities are long-running transactions that may consist of several short-
running AtomicTransactions. A BusinessActivity itself cannot hold a lock on a resource,
only its constituent AtomicTransactions may acquire exclusive locks on resources. The
main difference in behavior between an AtomicTransaction and a BusinessActivity
(apart from the duration) is its recovery concept. Whenever an AtomicTransaction fails,
the Rollback notification is sent, i.e. the 2PC's commit phase is simply not completed,
the uncommitted changes are discarded and all locks are released immediately. In
contrast, when a BusinessActivity fails, there are no locks that could be released.
Instead, all its AtomicTransactions which have already committed must be undone, i.e.
compensated.

Since these AtomicTransactions have already reached the Ended state, explicitly coded
business logic has to be called to reverse the effects of the already committed
AtomicTransactions.

For the bookstore example, this implies the following implementation (cf. Figure 4): The
book order BusinessActivity essentially consists of one AtomicTransaction which orders
the available books without considering whether all of the books were available or the
total amount exceeded 20 €. The user will be asked whether he is fine with the outcome
only after the AtomicTransaction has committed. If he is not, the order has to be
cancelled or, in case the books have already arrived after a long approval time, the parcel
has to be sent back as the compensating action.

start Busi-
nessActivity

start Atomic
Transaction

lock book 1

lock book 2

lock book 3

some
books
locked

end Busi-
nessActivity

commit
Atomic
Transaction

ask user

user interac-
tion required

approved

 not approved

no user
required

parcel already
arrived?

yes

no
cancel order

return parcel
compensation

Figure 4 shows the pure BusinessActivity implementation with compensating actions.

In contrast to the pure AtomicTransaction approach of section 4.1, the human interaction
takes place after the availability has been checked and the books have been locked. The
user can be sure that no error will occur because of other participants snatching away his
books. However, the greater usability of this optimistic approach is outweighed by its
high shipping charges: Simply ordering articles and then returning them in case the user
disapproves can be very expensive and is not feasible for most B2B scenarios.

In other words, the initially most obvious approach of modeling a transaction with
unknown duration simply as a long-running transaction such as a BusinessActivity does
not always make sense. Moreover, in this particular example, sending the books to any
prospective purchaser in advance makes these already dispatched books unavailable for
other participants. This is essentially the same as if an AtomicTransaction acquires a
long-running lock on the books. So, the pure BusinessActivity approach is undesirable in
many respects and not suitable for transactions with unknown duration such as the
bookstore example.

5 Second Approach: Ready-to-Commit Timeouts

Since the two previously described approaches both have severe disadvantages that
make them unsuitable for most B2B scenarios with human approval, we will now
discuss the requirements for the desirable solution that does not face the problems
encountered in section 4.1 and 4.2.

On the one hand, the disadvantages of the pure AtomicTransaction approach of section
4.1 have shown that locks should be acquired before the user is asked. On the other
hand, the pure BusinessActivity approach of section 4.2 is equivalent to locking
resources for a very long period of time which isn’t desirable either. Our proposition is
that locking resources is necessary, but because of the associated disadvantages, locks
should be granted only for a limited period of time.

This section discusses the possible implementation strategies for the bookstore example
with ready-to-commit timeouts – as opposed to an Expires timeout (cf. section 5.2). A
ready-to-commit timeout refers to limiting the timespan between the prepare phase and
the commit phase of the 2PC protocol, i.e. the usually very short moment in which the
resources are locked. This timeout might now be granted to a participant for, say, 60
seconds. If no user interaction is required, the system will certainly be able to finish the
transaction within less than one second and therefore the minute-long timeout is
meaningless – the transaction commits and the books are ordered. Similarly, if user
interaction is required, the user is assured that no other participant can snatch away his
books within this period of time – he may safely complete the order. In case that either
the ready-to-commit timeout of 60 seconds expires or the user votes to disapprove the
order, the locks are released, and other participants may order these books.

To minimize the number of error messages displayed to a user, it might be one possible
strategy to deal with a late order approval after 61 seconds (i.e. the user clicking the
“OK” button after the ready-to-commit timeout has expired and the locks have already
been released) as follows: All information on the order is now available and thus no
additional user interaction is required if still all of the books are available. It might then
be feasible to simply try to order the books with a single AtomicTransaction. Only if
some of the previously locked books are not available any more (or the price has risen),
an error message has to be displayed. This error message could also contain information
on the cause of the error, e.g. “Sorry, your timeout has expired and your order cannot be
repeated at present. Please try again.” The user would probably not consider this
message to be a bug.

Notice, however, that more complex situations in which some previously unavailable
articles are now available or the question of what will happen if the user wants to make
changes to the order are not discussed exhaustively in this paper. We will also neglect
the possibility to keep the lock on an article even after the timeout period has expired as
long as no other participant requests some of these locked articles.

The most important advantages of timeouts for this scenario are the following:
• If we assume that most transactions which require human interaction will be

approved or disapproved within 60 seconds, no validating check whether the desired
quantity is still available is needed, thereby minimizing overhead.

• Using timeouts makes the order process starvation-free, because no participant may
hold a lock forever.

• Moreover, because locks can be granted exclusively, the user is given a guarantee
that no unexpected failure condition may appear due to the unavailability of a book
before the timeout has expired.

Similar to the WSTF, the Web Services Composite Application Framework (WS-CAF)
does not contain a dedicated timeout mechanism for limiting the duration of the
Prepared (ready-to-commit) phase. The Business Transaction Protocol (BTP),
however, features an <inferior-timeout> tag that specifies the number of seconds
a participant is guaranteed to remain in the Prepared state as long as no Commit
notification arrives. After the timeout has expired, the BTP participant is allowed
(though not required) to finish the transaction by invoking either Commit or Cancel
depending on the Boolean value contained in the <default-is-cancel> tag. That
is, the bookstore’s basic desired behavior could well be implemented on the basis of
BTP by setting <default-is-cancel> to true. However, we will continue to
focus on the possible implementation strategies for the described behavior by means of
the WSTF only. Therefore, the main question now is: How can we ensure that the WSTF
transaction is rolled back (and the locks are released) after the timeout has expired?

5.1 AtomicTransaction with a Workaround

The 2PC protocol requires all its participants to agree on the transaction outcome. If at
least one participant does not agree to commit and instead votes to roll back the
transaction, the entire transaction will be aborted and all the other participants must roll
back their uncommitted work. This leads to the following feasible implementation of the
desired behavior: During the execution of the prepare phase in which the books are
locked, another activity is invoked. In contrast to the other prepare phase activities, this
“dummy” activity does not acquire any locks, but its only purpose is to wait for the
timeout to expire and then send the Rollback notification (cf. Figure 5).

start Atomic
Transaction

lock book 1

lock book 2

lock book 3

commit Atomic
Transaction

end of
order

ask user

user interac-
tion required

approved

timeout expired

no user
required“dummy” activity

timeout error

not approved abort Atomic
Transactionabort Atomic

Transaction

start of
order

 user tries
 to approve
 too late
 => try again!

Figure 5 depicts the order process with a “dummy” activity that automatically rolls back the

transaction after the timeout has expired.

Notice that if the user has tried to approve the order after the timeout has expired, e.g.
after 61 seconds, the “start AtomicTransaction” activity is reached for the second time.
In this situation, the condition “user interaction required” holds false if nothing about
price and availability of the books has changed from the first time this step was reached.

Although this implementation clearly provides the required behavior, there is some
implementation overhead because of the dummy activity that has to be implemented for
every AtomicTransaction with human approval. As we have argued, human interaction
will become more and more common, and it would thus be better if the timeout
mechanism was already implemented by the bookstore's transaction manager. This will
be discussed in the subsequent section.

5.2 The Desirable Architecture

Timeouts are a relatively common mechanism in distributed environments. It is therefore
not surprising that the WS-Coordination specification [La03a] already contains a timeout
mechanism: the optional Expires attribute whose semantics can be overridden by
every new coordination protocol. Both WS-AtomicTransaction and WS-
BusinessActivity actually override the semantics of this attribute. Quoting the WS-
AtomicTransaction specification [La03b]: “This attribute specifies the earliest point in
time at which a transaction may be terminated solely due to its length of operation. From
that point forward, the transaction manager may elect to unilaterally roll back the
transaction, so long as it has not transmitted a Commit or a Prepared notification.”

Notice that a transaction manager might be either the participant's coordinator or the
bookstore's coordinator. In the context of the bookstore example, the bookstore
coordinator manages all timeouts. So, the value passed in the Expires attribute of the
CoordinationContext specifies the (earliest) point in time at which the bookstore
coordinator is allowed to roll back the transaction as long as it has not yet sent the
Commit notification.

The first idea would be to simply let the Expires attribute specify the ready-to-commit
timeout. The bookstore's coordinator could be configured to make use of its right to
unilaterally roll back the transaction after the timeout has expired, which would be an
operable solution to the desired behavior as described in section 5. However, there are
several problems related to the Expires attribute:
• As its name already indicates, the Expires attribute contains an absolute time

value, e.g. “2004-10-11T18:30:00.000+01:00”. If the inherent assumption that the
coordinator's and participants' clocks are reasonably synchronous does not hold, this
creates severe difficulties for relatively short timeouts. For example, if the granted
timeout is 10 seconds and the time difference between the two clocks is 11 seconds,
this would render any book order impossible.

• The Expires attribute is determined before the transaction starts. As a result, the
bookstore would not be able to grant a shorter lock on a book that is in high demand
and in low stock than on a book still available in abundance.

As a result, we cannot build a good solution to the bookstore Web Service based on the
Expires attribute. Instead, our proposed solution is based on the following extensions
to the WS-AtomicTransaction specification:

• The length of the ready-to-commit timeout is represented in the form of an offset
value, e.g. the number of milliseconds, and is determined by the coordinator only
after all participants have sent the Prepared message, e.g. after all books have
been locked. The information on the timeout length then has to be conveyed to the
ordering participant, e.g. the user.

• If the ready-to-commit timeout expires without any human interaction, the system
changes its state to a dedicated error condition, e.g. TimeoutExpired, which
allows for a backward jump to the initial Active state without forgetting the
transaction context.

These two extensions would substantially decrease the effort of implementing a Web
Service with unknown duration, e.g. due to human interaction, as shown in Figure 6.

start Atomic
Transaction

lock book 1

lock book 2

lock book 3

commit Atomic
Transaction

end of
order

ask user

user interac-
tion required

approved

timeout expired

no user
required

TimeoutExpired

not approved

abort Atomic
Transaction

start of
order

 user tries
 to approve
 too late
 => try again!

Prepared

Figure 6 depicts the process of the typical book order transaction based on our proposed extensions

to WS-AtomicTransaction.

The result of our two minor extensions to the WS-AtomicTransaction specification is a
simple and intuitive implementation strategy to the bookstore example. As already
stated, since Web Services increasingly tend to be used as part of BPEL4WS workflows
which often require human interaction, this scenario will become more common and a
built-in timeout mechanism is required to deal with B2B transactions efficiently.

6 Conclusions

As more and more Web Services are designed not only for computer-to-computer
communication but also for workflow management systems with human interaction,
transactions with unknown duration will play an increasingly important role. We have
demonstrated that transactions with unknown duration cannot be implemented as either
short-running AtomicTransactions or as long-running BusinessActivities without
running into serious difficulties. Instead, a timeout mechanism is required for the time a
resource is exclusively locked. We therefore proposed two extensions to the WS-
AtomicTransaction specification: a ready-to-commit timeout duration value that has to
be determined by the coordinator after the 2PC's prepare phase has finished as well as a
dedicated TimeoutExpired condition which allows for a backward jump to retry the
transaction in case of a late (order) approval.

The result is the implementation strategy of section 5.2 (cf. Figure 6) in which the entire
timeout management has been delegated to the bookstore coordinator. Future work will
be conducted in the field of transactions requiring multiple human interaction steps, i.e.
timeout-based transactional workflows that generalize the assumptions of the bookstore
example.

Acknowledgement

This paper was written as part of a Web Services research project at DaimlerChrysler
Research and Technology in Ulm, Germany and a diploma thesis at the Department of
Applied Information Processing (SAI) of Prof. Schweiggert at the University of Ulm.

References

[Ca04] L. F. Cabrera, G. Copeland, J. Johnson, D. Langworthy. Coordinating Web Services
Activities with WS-Coordination, WS-AtomicTransaction, and WS-BusinessActivity.
January 2004. http://msdn.microsoft.com/library/en-us/dnwebsrv/html/wsacoord.asp

[Ce02] A. Ceponkus et al. Business Transaction Protocol. BTP Committee specification. April
2002. http://www.oasis-open.org/committees/business-transactions/

[Cu03] F. Curbera, R. Khalaf, N. Mukhi, S. Tai, S. Weerawarana. The Next Step in Web
Services. Communications of the ACM. Communications of the ACM. Volume 46.
Issue 10. October 2003.

[Gr81] J. Gray. The Transaction Concept: Virtues and Limitations. In Proceedings of the 7th
International Conference on Very Large Data Bases. Pages 144-154. September 1981.

[GR92] J. Gray, A. Reuter. Transaction Processing: Concepts and Techniques. Morgan
Kaufmann Series in Data Management Systems. 1992.

[JG03] T. Jin, S. Gosschnick. Utilizing Web Services in an Agent Based Transaction Model
(ABT). International Workshop on Web Services and Agent-based Engineering
(WSABE-2003), held in conjunction with AAMAS-2003. Pages 1-9. July 2003.

[La03a] D. Langworthy et al. WS-Coordination specification. September 2003.
http://www-106.ibm.com/developerworks/library/ws-coor/

[La03b] D. Langworthy et al. WS-AtomicTransaction specification. September 2003.
http://www-106.ibm.com/developerworks/library/ws-atomtran/

[La04] D. Langworthy et al. WS-BusinessActivity specification. January 2004.
http://www-106.ibm.com/developerworks/library/ws-busact/

[Li03] M. Little et al. Web Services Composite Application Framework (WS-CAF). Version
1.0. July 2003. http://developers.sun.com/techtopics/webservices/wscaf/primer.pdf

[Ne86] P. E. O'Neil. The Escrow Transactional Method. ACM Transactions on Database
Systems (TODS). Volume 11, Issue 4. Pages 405-430. December 1986.

[RS01] J. Roberts, K. Srinivasan. Tentative Hold Protocol Part 1: White Paper. W3C Note.
November 2001. http://www.w3.org/TR/tenthold-1/

[Th03] S. Thatte et al. Business Process Execution Language for Web Services. Version 1.1.
May 2003. http://www.ibm.com/developerworks/library/ws-bpel/

