A Scalable Entry-Level Architecture for
Computational Grids based on Web Services

Mario Jeckle, Ingo Melzer, and Jens Peter

University of Applied Sciences Furtwangen
Robert-Gerwig-Platz 1, D-78120 Furtwangen, Germany
mario@jeckle.de, paper@ingo-melzer.de, info@jens-peter.com
http://www. jeckle.de/ http://www.ingo-melzer.de/

Abstract. Grid computing has recently become very popular and this
development deserves to be called a hype. To benefit from the techniques
of Grid computing, it is not necessary to invest a lot in software for
smaller solutions. Simple Grids sized at entry-level can be implemented
using some ideas of service-oriented architectures. Especially when build-
ing such a new system, it is interesting to know, how the result will most
likely perform and how big the benefits will be.

This paper gives an approach to implement such an entry-level Grid
solution for computational tasks and introduces a computational model
to estimate the performance of these solutions.

1 Introduction

At the latest, since the Grid project SETI@home [7] became well known, Grid
computing can be called a hype and many software companies try to benefit
from this development. However, for smaller system a Grid solution can easily be
implemented from scratch, and platform independent solutions can be applied
in most system environments. Based on the idea of service-oriented architec-
tures, a simple and flexible approach is presented in this paper for implementing
computational Grids. Also a computational model is introduced to estimate the
performance of Grid solutions.

The remainder of this paper is structured as follows. First, the young history
of Grid applications is explored and different instances of Grids are sketched.
Based on this, the paradigm of Service-oriented architectures which is increas-
ingly confluent with Grid-based techniques is introduced. Additionally, inter-
preted programming languages with platform independent execution environ-
ments are discussed since these languages seem to be well suited for implement-
ing Grid contributing nodes.

Based on this, section three introduces a new computational model which
allows the estimation of expected performance for Grid applications relying on
the techniques introduced before. The computational model refactors proven
heuristics well-known in the field of parallel processing. As a foundation of our
proposed formula two prototypical Grid implementations sketching edge cases
are discussed.

2 Technologies Involved

2.1 Grid Computing

The Grid — A brief history Historically, the name Grid was chosen by
virture of the analogy to the power grid, which distributes electrical power to
each citizens power outlet, without knowledge where the electricity came from.
Likewise, the vision of applying the grid idea to computing is that computing
power (i.e., the ability to store or process data) will be available also through an
outlet. When aranging the evolution of Grid into generations, the focus can be
set on the standardization of the technology involved.

The pre-history of applying the grid idea to computing is based on technolo-

gies for distributed computing like the COMMON OBJECT REQUEST BROKER
ARCHITECTURE (CORBA), which is standardized by the OBJECT MANAGE-
MENT GROUP [8]. Also techniques like REMOTE METHOD INVOCATION (RMI)
and JINT [9] from Sun were launched to provide a software infrastructure for
distributed computing. And also DCE and DCOM are proposed as solutions for
Grid-computing.
All these technical approaches share the characteristc of beeing a point solution
to the issues to be addressed when stiving a solution for interconnecting various
resources. The term point solution (which was initially coined by [5]) here referes
to techniques which may contribute to solve certain aspects of the main problem
but which fail in addressing all issues at one time.

In the early 1990s some research projects focused on distributed computing
were founded. The publication of early results to the I-WAY [5] project which
were presented at the 1995 Super Computer conference represent the first true
Grid and thus mark the first generation of such approaches. The I-WAY im-
plementation connected 17 high-end computers over high-performance networks
to one metacomputer, which runs 60 different applications. The success of this
demonstration led the DARPA fund a new research project titled GLOBUS [4]
under the lead of FOSTER and KESSELMANN.

Another project which fits in the first generation of Grid computing is FAc-
TORING VIA NETWORK-ENABLED RECURSION (FAFNER for short) [6], which
was launched in context of the RSA Factoring Challenge. FAFNER creates a
metacomputer which was deployed to attack content that is cryptographically
secured by using the RSA algorithm. In detail FAFNER strives to attack the
basic idea of the RSA algorithm, which is the usage of large composite numbers
for securing arbitrary content. Since fast factorization or large composite num-
bers is a challenge which still lacks an efficient mathematical algorithm, attacks
require enormous amounts CPU time. Technically speaking, FAFNER provides
a Web interface for a factoring method which is well suited for parallel and
distributed execution, the number field sieve [19]. The project implemented a
software daemon which is based on the PERL scripting language which are ac-
cessed through the Common Gateway Interface protocol. The daemon handles
the retrieval of input values to the local system and the submission of results

via HTTP’s well-known GET and POST methods. This approach proved to be
successful and paved the way of other Web-based projects.

Other, mostly scientific based projects, like SETIQHOME [7], GENOMEQHOME,
or FIGHTAIDS@QHOME were launched. Also some mathematic based problems
gained help from concentrated computing power like the GREAT INTERNET
MERSENNE PRIME SEARCH or the GENERALIZED FERMAT PRIME SEARCH.
The still increasing number of computers connected to the internet via its access
to the World Wide Web widens the amount of potential contributors to these
projects.

With the current, i.e. the second, generation of the Grid, three main issues
have to be focused. These were heterogeneity, scalability and adaptability. In
this context answers to the following questions have to be found:

Identity and Authentication: How should machines which are authorized

to participate within the Grid be uniquely identified and authenticated?

— Authorization and Policy: How is decentralized authorization handled
and how are certain policies (like Quality of Service) guaranteed?

— Resource Discovery: How are resources which are offered by the Grid
discovered?

— Resource Allocation: How is handling of exclusive or shared resource al-
location handled?

— Resource Management and Security: How are the distributed resources

managed in an uniform way, esp. how can a certain level of security be

provided for all nodes participating within the Grid?

Today there are enormous efforts of companies like IBM, Sun, and HP to
advance the Grid idea to a next evolutionary step. The main focus here is the
service-oriented architecture approach on which the next generation of Grids
will be based. In essence the idea of distributed processing and data storage
underlying the Grid idea is increasingly merged with the technical infrastructure
summarized as WEB SERVICE. By doing so the level of standardization reached
by virtue of widely accepted Grid infrastructures such as the GLOBUS toolkit
is leveraged by the ubiquitous technical infrastrucutre of Web-based services.

Data Grid vs. Computational Grid The current state of applying the Grid
idea is summarized by [4] as:

”Grid computing enables virtual organizations to share geographi-
cally distributed resources as they pursue common goals, assuming the
absence of central location, central control, omniscience, and existing
trust relationship”

The absence of such a central control means, that there is no centralized
instance acting like an operating system which is in power to manage execution
characteristics (e.g. scheduling, memory management, interrupt handling). But,
for ease of management purposes some Grid implementations of major software

vendors deploy a centralized control in terms of a dedicated node offering the
tasks to be computed to the participating Grid nodes.

The abstract notion of Grid is differentiated further by companies providing

software and hardware infrastructure for Grids like IBM and Sun. In detail Sun
refers to CampusGrid while IBM chooses the term IntraGrid when addressing
Grids which are deployed company internal only.
Consequentially, company-spanning Grids are termed EztraGrids and Grid-based
solutions relying on the Internet’s technology are named InterGrids. Since the
latter ones are potentially distributed globally Sun introduced the additional
term GlobalGrid [11].

Further, often Grids are distinguished from an operational point of view.
Here two major directions have emerged. First, data-centric Grids which focus
on the transparent access to data distributed geographically. In essence these
”Grids should provide transparent, secure, high-performance access to federated
data sets across administrative domains and organizations”[10].

An example for a data Grid is the European DataGrid Initiative [12], a project
under the lead of CERN, the European nuclear research center. CERN’s data
Grid initiative which also involves IBM should manage and provide access from
any location worldwide to the unpresented torrent of data, billions of gigabyte a
year, that CERN’s Large Hadron Collider is expected to produce when it goes
online in 2007 [13]. The second mainstream of Grid computing is the computa-
tional Grid. In this approach, the idle time of network detached machines will be
shared and used by other Grid-enabled applications. A computational Grid can
be based on an IntraGrid, which uses the spare CPU-time of desktop computers
for compute intensive tasks. Such a systems is used by the swiss company NoO-
VARTIS to help solving problems in the medical research. The systems uses 2700
desktop computers to provide a computing power from about 5 terra FLOPS
[14].

In this paper we describe an architecture which combines the technical as-
pects (i.e., the deployment of Web-based service-oriented technology) of Inter-
Grids with the application area of IntraGrids. In detail this means benefiting
from the transfer of techniques typically found in InterGrids to closed organiza-
tions which deploy IntraGrids to Grids which are deployed accross organizational
boundaries. The advantage by doing so lies in lowered costs of infrastructure and
an increased amount of standardized components. Additionally, our approach
takes this further and establishes the notion of an entry-level Grid which adds
ease of deployment and operation.

2.2 Service-oriented Architectures

Some of the latest Internet-related developments share the idea of utilizing differ-
ent functionalities over the net without the requirement of using a browser. The
most general and to some degree visionary version is termed SERVICE-ORIENTED
ARCHITECTURE, or for short SOA.

The basic idea of a SOA is quite simple. A developer implements a service,
which can be any functionality made available to others, and registers his service
in some global registry like some yellow pages for services. A user, which is most
often some other service, is thereafter able to find the registered service, retrieve
all information about invoking the just found service, and call the service. In the
end, all this should happen without human involvement. This last step is called
loosely coupled, because the connection or coupling is made at run-time when
needed, in other words just in time.

2.3 Web Services

Today, the most advanced instance of a SOA is called Web services. The technical
basis of the Web service philosophy is grounded on the idea of enabling various
systems to exchange structured information in a decentralized, distributed en-
vironment dynamically forming a extremely loosely coupled system. In essence
this lead to the definition of lightweight platform-independent protocols for syn-
chronous remote procedure calls as well as asynchronous document exchange
using XML encoding via well-known Internet protocols such as HTTP.

After some introductory approaches which were popularized under the name
XML-RPC [22] the SOAP! protocol which has been standardized by the World
Wide Web Consortium [1, 2] establishes a transport-protocol agnostic framework
for Web services that could be extended by the user on the basis of XML tech-
niques.

The SOAP protocol consists of two integral parts: A messaging framework
defining how to encode and send messages. And an extensibility model for ex-
tending this framework by its user. Firstly, a brief introduction of the messaging
framework is given before showing value of the extensibility mechanisms to ac-
complish the goals defined above.

Technically speaking, SOAP resides in the protocol stack above a physical
wire protocol such as HTTP, FTP, or TCP. Although the specification does not
limit SOAP to HTTP-based transfers, this protocol binding is currently the most
prominent one and is widely used for Web service access. But it should be noted
that the approach introduced by this paper is designed to operate completely
independent of the chosen transport protocol and resides solely on the SOAP
layer.

All application data intended to be sent over a network using the SOAP pro-
tocol must be transferred into an XML representation. To accomplish this, SOAP
defines two message encoding styles. Therefore, the specification introduces rules
for encoding arbitrary graphs into XML. Most prominent specialization of this
approach is the RPC style introduced by the specification itself which allows
the exchange of messages that map conveniently to definitions and invocations
of method and procedure calls in commonly used programming languages. As
introduced before SOAP is by nature protocol agnostic and can be deployed for

L At the time of its definition the acronym stood for Simple Object Access Protocol.
In the standardized version SOAP is no longer an acronym.

message exchange using a variety of underlying protocols. Therefore a formal set
of rules for carrying a SOAP message within or on top of another protocol needs
to be defined for every respective transport protocol. This is done by the official
SOAP specification for HTTP as well as SMTP.

Inside the SOAP protocol the classical pattern of a message body carrying
the payload and an encapsulating envelope containing some descriptive data
and metainformation is retained. Additionally SOAP allows the extension of the
header content by the use of XML elements not defined by the SOAP speci-
fication itself. For distinguishing these elements from those predefined by the
specification the user has to take care that they are located in a different XML
namespace.

The example below shows a complete SOAP message accompanied with the
transport protocol specific data necessary when using the HTTP binding. Ad-
ditionally a user defined header residing in a non-W3C and thus non normative
namespace is shown as part of the SOAP Header element.

POST /axis/theService/ HTTP/1.1 Content-Type: text/xml;
charset=utf-8 Accept: application/soap+xml

Host: 10.0.0.1:8080

Content-Length: nnn

<7xml version="1.0" 7>
<env:Envelope
xmlns:env="http://www.w3.org/2003/05/so0ap-envelope">
<env:Header>
<nsi:DeliveryNotification
env:mustUnderstand="true"
env:role="http://www.w3.org/2003/05/soap-envelope/role/ultimateReceiver"
xmlns :nsi="urn:xmlns:daimlerchrysler.com:research">
<nsi:SendTo URI="MailTo:john.doe@daimlerchrysler.com"/>
</ni:DeliveryNotification>
</env:Header>
<env:Body>
<ns2:CalcParams>
<ns2:ID>7492653</ns2:ID>
<ns2:x>42</ns2:x>
<ns2:y>3.14</ns2:y>
<!-- more details omitted for brevity ... -->
</ns2:CalcParams>
</env:Body>
</env:Envelope>

In contrast to the payload which is intended to be sent to the receiver of the
SOAP message clearly identified by HT'TP’s Host header, SOAP headers may
or may not be created for processing by the ultimate receiver. Specifically, they
are only processed by machines identified by the predefined role attribute. By
doing so, the extension framework offers the possibility of partly processing a
message along its path from the sender to the ultimate receiver. These interme-
diate processing steps could fulfill arbitrary task ranging from problem oriented
ones like reformatting, preprocessing, or even fulfilling parts of the requests to
more infrastructural services such as filtering, caching, or transaction handling.
In all cases the presence of a node capable of (specification compliant) processing
of a SOAP message is prescribed. This is especially true since an intermediary
addressed by the role attribute is required to remove the processed header after
executing the requested task. Additionally, the specification distinguishes be-
tween headers optionally to be processed (e. g. caching) and those which are
interspersed to trigger necessary message behavior. The latter ones must addi-
tionally be equipped with the attribute mustUnderstand. If a header addressed
to an intermediary flagged by this attribute cannot be processed, the SOAP

node is forced to raise an exception and resubmit the message to the sender.
Thus it is ensured that all headers mandatory to be processed are consumed by
the respective addressees and removed afterwards.

Loosely Coupled An important property of a SOA and Web services it the
fact that they are loosely coupled. This means that they are not statically liked
and binding does not happen at compile time. During its execution, a service
can search for some other services, which might at this moment in time still be
unknown, retrieve information about the search results, and invoke one of the
just found services.

This allows to move services to different machines and simple change the
information in one of the registries. No other service has to be changed or re-
compiled. A promising starting point for a highly flexible infrastructure.

WS-Notification Later specifications such as WS-NOTIFICATION [24] allow
the implementation of the publish/subscribe pattern. This allows to automati-
cally trigger certain action as soon as certain criteria have been met.

WS-Notification allows the implementation of Grid infrastructures and Grid
based applications. The OPEN GRID SERVICES ARCHITECTURE, short OGSA,
moves very close to the Web services world and the latest version is based on
Web services standards.

If this development continues, it will soon be very difficult or even impossible
to tell Web services and Grid services apart. This development became obvious
one year ago in the OPEN GRID SERVICES INFRASTRUCTURE, short OGSI, def-
inition 1.0 which has been released in April 2003. It states in this context “a
Grid service is a Web service that conforms to a set of conventions (interfaces
and behaviors) that define how a client interacts with a Grid service”.

There are a number of alternatives to WS-Notification. Some features can be
implemented using WS-Eventing [23] and part 2 of WSDL 2.0 offers a message
exchange pattern, too.

2.4 Interpreted Languages

One of the main challenges for Grid application frameworks such as the OGSA /OGSI
approach is multi-platform support. That is for avoiding prescriptions concern-
ing platform details such as the deployed operating system running machines
participating the Grid. Also the infrastructure should not set out limits regard-
ing the programming language chosen for implementing machine’s code locally
executed but contributing to the Grid.

In general these challenges can be tackled by providing portable implementa-
tions as well as by specifying solely interfaces whose description do not reveal de-
tails of the programing language specific manifestation. Classically, the required
interfaces descriptions are provided by using standardized paradigm neutral ap-
proaches such as CORBA’s Interface Definition Language (IDL) or WSDL, the
in some sense comparable approach introduced by Web service technology.

Unfortunately, description mechanisms which concentrate solely on callable
interface do specifiy wire representations of the data to be exchanged between
communicating nodes. Therefore typically extra agreements have to be settled.
In CORBA'’s case this is the Common Data Representation resp. the XML for
Web service deployment.

Besides this the internal implementation of nodes participating the Grid may
vary vastly. In general this is rather a blessing than a cure. But, especially for en-
try level Grids the costly creation or even adaptation of code to deploy on single
nodes should be as lightweight as possible. Likewise, the potential requirement
to port applications to other platforms curbs the amount of specialities of the
respective language platform which can be used to an absolute minimum. There-
fore the reliance on the lowest common denominator, i.e. basic functionality
known to be supported by various plattforms is an archetypical design decision
to ensure widest, possible portability.

Our approach for supporting entry-level Grids therefore introduces the us-
age of a portable implementation and execution plattform as third cornerstone
(besides basic Grid ideas and reliance on standardized Web service technology)
of the proposed architecture.

It should be emphasized that this does not tie the approach to a single specific
platform. But it has not escapted our notice thas this founds a clear preference
for interpreted or at least hybrid (i.e. approaches which incorporate a compile
cycle which produces a result which is interpreted at runtime) languages such as
formed by the JAVA or Microsoft .NET platform.

As a result of this architectural constraint we are able to interconect vari-
ous physical platforms on short notice to a metacomputer. The computational
nodes constituting the metacomputer will be able to offer current programing
paradigms such as object orientation and concurrency without additional adap-
tation effors. Additionally, basing Grid applications on current programming ap-
proaches bears twofolded benefits for both, the Grid and the deployed software
execution environment. On the one hand deployment of Grid-based technology
is leveraged by the level of additional standardization. On the the other hand
the installation basis of the respective language environments is additionally
widened.

3 Performance Estimation

3.1 Computation Model

The architecture presented in this paper is based on a Web service enabled
server using the standardized SOAP communication protocol. The server hosts
the main controlling service and a Web service toolkit. Due to the usage of
standards it is technically feasible to add additional Grid nodes on short notice.
These nodes share their local resources for processing by using the same software
implementation available for different platforms and operating systems.

The main advantage of such an architecture is that the creation of a Grid is a
lightweight process. In essence it simply requires the distribution of the software

and its install on the participating machines. At runtime these machines will
act as clients requesting computational tasks fromt he node acting as server. At
development time the application implementing the problem to be solved has to
be transfered in an Grid-enabled application, so it is necessary to identify the
code needed to build a job list which contains the amounts of work which should
be distributed to the clients. Technically, one Grid node provide a job queue as
a central service.

The next step is to wrap a Web service around the processing code of the
application and deploy the service, which is an Web service RPC, on the server.
To add new nodes to the Grid, solely the Web service has to be deployed to a
network attached computer. Additionally, the new node has to be announced
to the queue holding serving. This could be done by simply adding its network
address to a configuration file or online by sending a predefined message.

This Grid is build up as a logical star topology, a single computer, the con-
troller, coordinates the available resources. This controller has to fulfill different
tasks in the Grid, for example he has to build the list of jobs, what means that
the original task the Grid-enabled application has to process must be split in
smaller pieces, the jobs, for parallel execution. The controller has to distribute
these jobs to the available nodes, the computers which share their computing
resources to the Grid and receive the processed results from the nodes. Com-
munication with the participating nodes is operated in an asynchronous mode.
Thus either asynchronous Web service calls have to be used or asynchronous
communication has to be emulated on-top of synchronous communication. One
way to achieve the latter ist to deploy multithreading within the controller.

On the node, there is also a Web service deployed which receives and process
a job. The controller and the nodes are connected through a network, no matter
if it is a local departemental network or the internet.

Fig. 1 is a schematically presentation of the architecture including the em-
ulation of asynchronous communication by multithreaded synchronous commu-
nication.

The primary task is split into a number of single jobs by the JobScheduler.

. The controller invoke for every active node an own Service Thread.

. Every thread grabs a jobs from the JobQueue.

. The job is send to the nodes for processing and the Service Thread wait for
the result. When an error occurs, for example the Grid node is temporarily
not available, the job is republished to the JobQueue and the Service Thread
will wait for an estimated time to send a new job to the node.

5. After the successful processing of a job, the node sends back the result to

his ServiceThread and it is stored by the controller.

= W N

Based on that architecture, the following answers for the basic questions in
Chapter 2.1 can be presented:

GridNode 1

controller

— v 1

3 |z

2 oD
Thread 1 €] OB

—~ Thread 2 [€]
. JOB n-1
RESULT

/I Thre.ad n |<_ 3

\ 4

Fig. 1. Architecture

— Identity and Authentication: Solely the controller initiates connections
to the nodes. The participating nodes can register themselves actively to
take part within a computation task. For authenticating nodes the initiating
SOAP requests can be signed digitally.

— Authorization and Policy: Based on a validated digital signature nodes
are authorized to receive data for fulfilling the computation tasks. Policies
concerning aspects of Quality of Service are ensured by the controller. If a
node does not send back its computed result data in a certain amount of
time the node is marked as inactive and the data is distributed to another
node.

— Resource Allocation: Grid nodes can determine the share of processing
time they devote to the computation of received tasks independent from
the controller. In case of high node utilization the nodes are also allowed
to withdraw from the Grid without requiring them to signal this to the
controller.

— Resource Management and Security: Due to the usage of an interpreted
language which can be executed on various platforms all resources can be
handled in a uniform manner by utilizing the abstraction introduced by the
execution platform. Security concerns can be addressed by deploying XML
and Web service security mechanisms.

Within this model the following issues take influence to the over all perfor-
mance of such a Grid:

Implementation of the Grid-enabled application: How much time is needed
by the application to process the code which is not influenced by the paral-
lel processing? Is there a JobQueue which contains the jobs prepared by a
JobScheduler or must the controller extract every single job from the orig-
inally task at runtime? What happens with the results? What amount of

data need to be transfered for one job? How many jobs need to be processed
in a second?

Performance of the controller computer: Because the controller has to co-
ordinate every job and result, the performance of the controller can be a key
indicator for the performance of the whole Grid. How many jobs per second
can be transfered? Is there a local database the results where stored in? Must
the controller host other applications than the Grid?

Networkperformance: With what type of network are the nodes connected
to the controller? What is the maximal bandwidth of the network? Is every
node in the same subnet? What is about the other traffic on the network?

Processingroutines on the Grid node: How much time need a node to pro-
cess a job?

It is very interesting to forecast the performance benefit before transferring
an application in a Grid-enabled application. There were some efforts to forecast
the speedup of an application when running it on a parallel processor system. One
of the formulas to forecast the speedup is the GUSTAFSON-BARSIS (1) approach:

SpeedUp = #CPU + (1 — #CPU) P, (1)

But this could not easy be transfered to a Grid where the parallel processors are
connected via a network and the application and not the operating system need
to handle the distribution of the processes to the additional computing power.
In this case, not only the sequential (code which could not processed parallel)
part of the application is an indicator for the speedup. Other parameters are the
network latency, the time need to transmit the application parameters to pro-
cess to the nodes, and the overhead the application produce to prepare sending
and receiving of the parameters. By now, there is no approach to forecast such
a speed up for Grid services.

In consideration of this issues the following formula (2) can give a forecast
on the speedup of an entry-level Grid:

SpeedUp = #CPU — #CPU * (Pseq + NL) — (#CPU % P,yer) (2)
N—_—— —
GridFactor

The maximal speedup must be less than the number of processors so there
are some other parameter we have to look at. The factor Py, represents the
sequential part of the application and will influence the maximum speedup be-
cause this factor will rise when the over all time the application need to process
will decrease when it is processed by more computers. The network latency, or
NL, is not static, it represents a range between 0 and 1 and has to be explored
by a statistical review based on network performance tests.

A significant factor is Py, the overhead of performance of the application.
This overhead and the number of used CPUs or Grid nodes is the so called
GridFactor. This GridFactor is a key performance indicator for the Grid. Some

problems can be easy adapted for parallel processing but there is an immense
overhead when there are more processing units involved. For example the pro-
cessing time for a job is under 1 ms but the time needed to prepare the parameter
for this job is about 100 times higher, there is no sense to process this kind of
problem in a parallel way. With every additional Grid node the performance will
go from bad to worse and with such a bad GridFactor there will be no speedup
at all. The value of P,,.. has also be explored by statistical review based on
tests with a prototype of the Grid-enabled application.

3.2 Validation

The results with a huge P,y and therefrom a high GridFactor can be shown
with the Grid-enabled example application for matrices multiplication. The re-
sults of the time measurement tests with this application shows, that the pro-
cessing time is stable, no matter if we have one node or ten nodes connected to
the Grid. One handicap was that this application has had no JobScheduler to
prepare the jobs and the other handicap was that the processing time on a nodes
was approximate zero. The missing JobScheduler results in that the controller
must prepare every job at runtime. And it take more time to prepare a job for
a node than the node need to process it (about 1 nanosecond). The GridFactor
for this kind of application is to high that there is no speedup at all.

The second application was implemented based on a thesis at the Fraunhofer
Institute for Manufacturing Engineering and Automation IPA in Stuttgart [16].
It is a tool for analyzing networks, in this case specially to identify the leaks in
the waver transport network of a computerchip fab. To enable the stand alone
application for the Grid, the processing unit with the algorithms was extracted
and the JobScheduler was modified. A Web service with the processing routine
was deployed on the nodes and the amount of data was about 4kB for each job.
Fig. 2 shows a sequence diagram of that application.

Fig. 3 shows the speedup reached with this application. Two different sce-
narios were tested with the application. The test were based on a sample net-
work model with 31 nodes and 72 edges. Two different analyses were run on
the model. The first test scenario was to analyze the network with one compo-
nent to fail(fault:1-test). For this simulation 103 calculations have to be done.
The second analyze simulates two defect components(fault:2-test) what results
in 5253 calculations. The different speedups of the tests caused on the different
Pseq and NL parts. In the fault:1-test, the ratio of P,., and NL to the application
time over all was higher. And the processing time on the clients a bit lower be-
cause the need to calculate only with one parameter. The fault:2-test shows a
much better speed up. Within this test the ratio of P4, and NL to the applica-
tion time over all was lower, the time the nodes need to process a little bit higher.

With the Grid-enabled version of this software the time needed to analyze
this small network with about 103 components shrink from over 80 minutes with
a single slave to 6 minutes with 20 slaves. With the distributed computing it is

GridNode

GridServerExecutive

ServiceThread

Handler

D

ConfigHandler

GridController

MainClass

init

i
|
o i
x I
[=] i
> I
£ i
|
i
i
i
o i
2 i
% 1
||||||||| (Inu =i snanogor) ajiym
1 |
3 N I
]
= i
T g 3
S 2 i
! 2 i} |
el H [7] 24 !
s i] 5 i
= g 3 2 |
s o e B i
........ E i - et | S -
c [
5] S| g I |
(%] sLE n I
| 5 i
| % |
| o i
i £ |
! 4= I
, |
R IS T o B -
] !
4 i
i
B |
i
=z |
he] |
9] |
- i
\\\\\\\\\\\\\ = I S E
= i
[I
o i
E |
3 i
~ !
i
] |
o i
i

GridServer.

Fig. 2. Sequence Diagram

SpeedUp

—a—fault: 1

—&—fault: 2

17 17 17 47 18 18 18 19

14 14 1©°
g 10 g 9 o 10 10 10 10 10 10 10 10

25

o ;N O 1w o
N - -

19188} Saw X

1 4 8 12 16 18 20 22 24 26 28 30 32 34 36 38 40

Number of GridNodes

Fig. 3. SpeedUp

now possible to analyze a network in a manageable timeframe. The tests were
executed on computers with a Athlon©® 1100 MHz processor connected with a
switched 100Mbit Ethernet. The Grid was based on a Tomcat server and the
Web service framework Axis, both from the Apache Software Foundation [18].

The GridFactor for this application was better because the speedup is rising
with the number of nodes. In Fig. 3 is shown that the speedup is rising slower
with additional Grid nodes which is a result of the rising GridFactor. The tested
application caused a processing time on the Grid nodes between 700 and 1100
milliseconds, so there was a average load from one call for every Grid node per
second. Fig. 4 shows that there can be about 60 to 100 calls per second with a
payload of 4kByte so NL is small and probably has not influenced the speedup
stagnation happend by about 20 nodes.

SOAP-Calls per second

140
120
100

=& Crosslink
—e— Hub 10Mbit

o
o

[<2]
o

IN
<)

Number of Calls

N
o

o

64 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k 12k 14k 16k 18k 20k 25k 30k
Data-Size

Fig. 4. SOAP-Calls per second

The maximum number of calls depending to the size of data (Fig. 4) was
measured with the SOAPing-Tool [17], which can be used for testing the an-
swer /reply behavior for a SOAP call in the tradition of the ICMP Echo ser-
vice, better known as PING. The role of the controller fulfill a computer with
a Pentium©-IIT Mobile processor with 1100 MHz and there was a computersys-
tem based on an Athlon©® XP 3000+ as a Grid node. The measured data is the
average value from about 50000 SOA Pings for each payload.

4 Related Work

Confluence of Web service technology and Grid applications are currently part
of the next release of the OGSA/OGSI toolkit. It is expected by virtue of pub-
lications available from the GLOBAL GRID FORUM that in future all nodes par-
ticipating in a Grid (regardless is speaking of data or computational Grids) will

be accessible by using Web service interfaces. As a consequence the seminal
standards WSDL and SOAP will widen its position as ubiquitous infrastructure
based on the Web’s base technology such as HTTP.

Concerning performance estimation of computational Grids only heuristics
[20] and models with limited applicability [21] have been published so far. Both
approaches addtionally lack consideration of entry-level technology such as in-
terpreted languages and Web services.

5 Summary

It is not very difficult to implement platform independent solutions for compu-
tational Grids from scratch as it has been done for this paper. However, it is
interesting to know how such solutions scale given the specific problem to be
calculated. For this purpose, this paper has introduced a simple model includ-
ing two formulas to estimate the performance of a computational Grid solution.
This allows judge the potential benefit of an implementation before starting the
real implementation and also helps to evaluate scenarios which might be used
for Grid computing.

References

1. M. Gudgin, M. Hadley, J.-J. Moreau, H. F, Nielsen: W3C Candidate Rec-
ommendation: SOAP 1.2 Part 1: Messaging Framework, 20 December 2002
http://www.w3.org/TR/soapl2-partl/

2. M. Gudgin, M. Hadley, J.-J. Moreau, H. F. Nielsen: W3C Candi-
date Recommendation: SOAP 1.2 Part 2: Adjuncts, 20 December 2002
http://www.w3.org/TR/soapl2-part2/

3. R. Fielding, et al: Hypertext Transfer Protocol - HTTP /1.1, RFC2616, June 1999
http://www.ietf.org/rfc/rfc2616.txt

4. Globus http://www.globus.org

T. DeFanti, I. Foster, M. Papka, R. Stevens, T. Kuhfuss: Overview of the I-

Way. International Journal of Supercomputer Applications, 10(2):123-130, 1996.

http://www.globus.org/research/papers.html

FAFNER http://www.npac.syr.edu/factoring.html

SETI@home http://setiathome.ssl.berkeley.edu/

OMG http://wuw.omg.org

JINI http://www.jini.org/

A. Grimshaw: Data Grids in Ahmar Abbas, Grid Computing: A Practical Guide to

Technology and Applications, 2004 Charles River Media, Hingham

11. A. Abbas: Grid Computing Technology - An Overview in Ahmar Abbas, Grid

Computing: A Practical Guide to Technology and Applications, 2004 Charles River
Media, Hingham
12. The DataGrid Project http://eu-datagrid.web.cern.ch
13. D. De Roure et al: The evolution of the Grid in Fran Berman, Geoffrey C. Foz,
Anthony J. G. Hey: Grid Computing, 2003 John Wiley and Sons, West Sussex
14. Schlafende PC mutieren zum Supercomputer, Neue Ziircher Zeitung, 7. November
2003
http://www.nzz.ch/netzstoff/2003/2003.11.07-em-article97JEJ.html

ot

S © 0N

15.
16.
17.
18.
19.

20.

21.

22.

23.

24.

25.

A Future e-Science Infrastructure
http://www.nesc.ac.uk/technical_papers/DavidDeRoure.etal.SemanticGrid.pdf
T. Geldner, Graphenbasierte Layoutplanung von Transportnetzwerken in Halbleit-
erfabriken, Konstanz/Stuttgart 2004

SOAPing http://www. jeckle.de/freeStuff/soaping/index.html

The Apache Software Foundation http://www.apache.org/

A. K. Lenstra, H. W. Lenstra, Jr., M. S. Manasse, J. M. Pollard: The Number
Field Sieve, ACM Symposium on Theory of Computing, 1990.

S. Sodhi: Automatically Constructing Performance Skeletons for use in Grid Re-
source Selection and Performance Estimation Frameworks, Proceedings of the 15th
ACM/IEEE Supercomputing Conference, 2003.

C. Lee, J. Stephanek: On Future Global Grid Communication Performance, Global
Grid Forum, 1999.

D. Winer: XML-RPC Specification, available electronically, 1999.
http://www.xmlrpc.com/spec

L. F. Cabrera, C. Critchley, G. Kakivaya et al.: WS-Eventing, available electroni-
cally, 2004.

http://ftpna2.bea.com/pub/downloads/WS-Eventing. pdf

S. Graham, P. Niblett, D. Chappell et al.: Web Service Base Notification, available
electronically, 2004.
ftp://www6.software.ibm.com/software/developer/library/ws-notification/WS-BaseN.pdf
M. Gudgin, A. Lewis, J. Schlimmer (eds.): Web Services Description Language
(WSDL) Version 2.0 Part 2: Message Exchange Patterns, W3C Working Draft,
World Wide Web Consortium, available electronically, 2004.
http://www.w3.org/TR/2004/WD-wsd120-patterns-20040326

appendix. evtl. Code oder UML-Diagramme

